Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A reaction network scheme which implements the EM algorithm (1804.09062v1)

Published 24 Apr 2018 in cs.ET, cs.IT, cs.SY, math.IT, q-bio.MN, and stat.AP

Abstract: A detailed algorithmic explanation is required for how a network of chemical reactions can generate the sophisticated behavior displayed by living cells. Though several previous works have shown that reaction networks are computationally universal and can in principle implement any algorithm, there is scope for constructions that map well onto biological reality, make efficient use of the computational potential of the native dynamics of reaction networks, and make contact with statistical mechanics. We describe a new reaction network scheme for solving a large class of statistical problems including the problem of how a cell would infer its environment from receptor-ligand bindings. Specifically we show how reaction networks can implement information projection, and consequently a generalized Expectation-Maximization algorithm, to solve maximum likelihood estimation problems in partially-observed exponential families on categorical data. Our scheme can be thought of as an algorithmic interpretation of E. T. Jaynes's vision of statistical mechanics as statistical inference.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.