Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

An Information-Theoretic View for Deep Learning (1804.09060v8)

Published 24 Apr 2018 in stat.ML and cs.LG

Abstract: Deep learning has transformed computer vision, natural language processing, and speech recognition\cite{badrinarayanan2017segnet, dong2016image, ren2017faster, ji20133d}. However, two critical questions remain obscure: (1) why do deep neural networks generalize better than shallow networks; and (2) does it always hold that a deeper network leads to better performance? Specifically, letting $L$ be the number of convolutional and pooling layers in a deep neural network, and $n$ be the size of the training sample, we derive an upper bound on the expected generalization error for this network, i.e., \begin{eqnarray*} \mathbb{E}[R(W)-R_S(W)] \leq \exp{\left(-\frac{L}{2}\log{\frac{1}{\eta}}\right)}\sqrt{\frac{2\sigma2}{n}I(S,W) } \end{eqnarray*} where $\sigma >0$ is a constant depending on the loss function, $0<\eta<1$ is a constant depending on the information loss for each convolutional or pooling layer, and $I(S, W)$ is the mutual information between the training sample $S$ and the output hypothesis $W$. This upper bound shows that as the number of convolutional and pooling layers $L$ increases in the network, the expected generalization error will decrease exponentially to zero. Layers with strict information loss, such as the convolutional layers, reduce the generalization error for the whole network; this answers the first question. However, algorithms with zero expected generalization error does not imply a small test error or $\mathbb{E}[R(W)]$. This is because $\mathbb{E}[R_S(W)]$ is large when the information for fitting the data is lost as the number of layers increases. This suggests that the claim `the deeper the better' is conditioned on a small training error or $\mathbb{E}[R_S(W)]$. Finally, we show that deep learning satisfies a weak notion of stability and the sample complexity of deep neural networks will decrease as $L$ increases.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube