Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

An Information-Theoretic View for Deep Learning (1804.09060v8)

Published 24 Apr 2018 in stat.ML and cs.LG

Abstract: Deep learning has transformed computer vision, natural language processing, and speech recognition\cite{badrinarayanan2017segnet, dong2016image, ren2017faster, ji20133d}. However, two critical questions remain obscure: (1) why do deep neural networks generalize better than shallow networks; and (2) does it always hold that a deeper network leads to better performance? Specifically, letting $L$ be the number of convolutional and pooling layers in a deep neural network, and $n$ be the size of the training sample, we derive an upper bound on the expected generalization error for this network, i.e., \begin{eqnarray*} \mathbb{E}[R(W)-R_S(W)] \leq \exp{\left(-\frac{L}{2}\log{\frac{1}{\eta}}\right)}\sqrt{\frac{2\sigma2}{n}I(S,W) } \end{eqnarray*} where $\sigma >0$ is a constant depending on the loss function, $0<\eta<1$ is a constant depending on the information loss for each convolutional or pooling layer, and $I(S, W)$ is the mutual information between the training sample $S$ and the output hypothesis $W$. This upper bound shows that as the number of convolutional and pooling layers $L$ increases in the network, the expected generalization error will decrease exponentially to zero. Layers with strict information loss, such as the convolutional layers, reduce the generalization error for the whole network; this answers the first question. However, algorithms with zero expected generalization error does not imply a small test error or $\mathbb{E}[R(W)]$. This is because $\mathbb{E}[R_S(W)]$ is large when the information for fitting the data is lost as the number of layers increases. This suggests that the claim `the deeper the better' is conditioned on a small training error or $\mathbb{E}[R_S(W)]$. Finally, we show that deep learning satisfies a weak notion of stability and the sample complexity of deep neural networks will decrease as $L$ increases.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.