Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

An Anchor-Free Region Proposal Network for Faster R-CNN based Text Detection Approaches (1804.09003v1)

Published 24 Apr 2018 in cs.CV

Abstract: The anchor mechanism of Faster R-CNN and SSD framework is considered not effective enough to scene text detection, which can be attributed to its IoU based matching criterion between anchors and ground-truth boxes. In order to better enclose scene text instances of various shapes, it requires to design anchors of various scales, aspect ratios and even orientations manually, which makes anchor-based methods sophisticated and inefficient. In this paper, we propose a novel anchor-free region proposal network (AF-RPN) to replace the original anchor-based RPN in the Faster R-CNN framework to address the above problem. Compared with a vanilla RPN and FPN-RPN, AF-RPN can get rid of complicated anchor design and achieve higher recall rate on large-scale COCO-Text dataset. Owing to the high-quality text proposals, our Faster R-CNN based two-stage text detection approach achieves state-of-the-art results on ICDAR-2017 MLT, ICDAR-2015 and ICDAR-2013 text detection benchmarks when using single-scale and single-model (ResNet50) testing only.

Citations (118)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.