Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

End-Task Oriented Textual Entailment via Deep Explorations of Inter-Sentence Interactions (1804.08813v3)

Published 24 Apr 2018 in cs.CL

Abstract: This work deals with SciTail, a natural entailment challenge derived from a multi-choice question answering problem. The premises and hypotheses in SciTail were generated with no awareness of each other, and did not specifically aim at the entailment task. This makes it more challenging than other entailment data sets and more directly useful to the end-task -- question answering. We propose DEISTE (deep explorations of inter-sentence interactions for textual entailment) for this entailment task. Given word-to-word interactions between the premise-hypothesis pair ($P$, $H$), DEISTE consists of: (i) a parameter-dynamic convolution to make important words in $P$ and $H$ play a dominant role in learnt representations; and (ii) a position-aware attentive convolution to encode the representation and position information of the aligned word pairs. Experiments show that DEISTE gets $\approx$5\% improvement over prior state of the art and that the pretrained DEISTE on SciTail generalizes well on RTE-5.

Citations (24)

Summary

We haven't generated a summary for this paper yet.