Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

QSAR Classification Modeling for Bioactivity of Molecular Structure via SPL-Logsum (1804.08615v2)

Published 23 Apr 2018 in cs.LG and stat.ML

Abstract: Quantitative structure-activity relationship (QSAR) modelling is effective 'bridge' to search the reliable relationship related bioactivity to molecular structure. A QSAR classification model contains a lager number of redundant, noisy and irrelevant descriptors. To address this problem, various of methods have been proposed for descriptor selection. Generally, they can be grouped into three categories: filters, wrappers, and embedded methods. Regularization method is an important embedded technology, which can be used for continuous shrinkage and automatic descriptors selection. In recent years, the interest of researchers in the application of regularization techniques is increasing in descriptors selection , such as, logistic regression(LR) with $L_1$ penalty. In this paper, we proposed a novel descriptor selection method based on self-paced learning(SPL) with Logsum penalized LR for predicting the bioactivity of molecular structure. SPL inspired by the learning process of humans and animals that gradually learns from easy samples(smaller losses) to hard samples(bigger losses) samples into training and Logsum regularization has capacity to select few meaningful and significant molecular descriptors, respectively. Experimental results on simulation and three public QSAR datasets show that our proposed SPL-Logsum method outperforms other commonly used sparse methods in terms of classification performance and model interpretation.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.