Papers
Topics
Authors
Recent
2000 character limit reached

Towards Symbolic Reinforcement Learning with Common Sense (1804.08597v1)

Published 23 Apr 2018 in cs.LG, cs.AI, and stat.ML

Abstract: Deep Reinforcement Learning (deep RL) has made several breakthroughs in recent years in applications ranging from complex control tasks in unmanned vehicles to game playing. Despite their success, deep RL still lacks several important capacities of human intelligence, such as transfer learning, abstraction and interpretability. Deep Symbolic Reinforcement Learning (DSRL) seeks to incorporate such capacities to deep Q-networks (DQN) by learning a relevant symbolic representation prior to using Q-learning. In this paper, we propose a novel extension of DSRL, which we call Symbolic Reinforcement Learning with Common Sense (SRL+CS), offering a better balance between generalization and specialization, inspired by principles of common sense when assigning rewards and aggregating Q-values. Experiments reported in this paper show that SRL+CS learns consistently faster than Q-learning and DSRL, achieving also a higher accuracy. In the hardest case, where agents were trained in a deterministic environment and tested in a random environment, SRL+CS achieves nearly 100% average accuracy compared to DSRL's 70% and DQN's 50% accuracy. To the best of our knowledge, this is the first case of near perfect zero-shot transfer learning using Reinforcement Learning.

Citations (28)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.