Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 180 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Dropping Networks for Transfer Learning (1804.08501v3)

Published 23 Apr 2018 in stat.ML and cs.LG

Abstract: Many tasks in natural language understanding require learning relationships between two sequences for various tasks such as natural language inference, paraphrasing and entailment. These aforementioned tasks are similar in nature, yet they are often modeled individually. Knowledge transfer can be effective for closely related tasks. However, transferring all knowledge, some of which irrelevant for a target task, can lead to sub-optimal results due to \textit{negative} transfer. Hence, this paper focuses on the transferability of both instances and parameters across natural language understanding tasks by proposing an ensemble-based transfer learning method. \newline The primary contribution of this paper is the combination of both \textit{Dropout} and \textit{Bagging} for improved transferability in neural networks, referred to as \textit{Dropping} herein. We present a straightforward yet novel approach for incorporating source \textit{Dropping} Networks to a target task for few-shot learning that mitigates \textit{negative} transfer. This is achieved by using a decaying parameter chosen according to the slope changes of a smoothed spline error curve at sub-intervals during training. We compare the proposed approach against hard parameter sharing and soft parameter sharing transfer methods in the few-shot learning case. We also compare against models that are fully trained on the target task in the standard supervised learning setup. The aforementioned adjustment leads to improved transfer learning performance and comparable results to the current state of the art only using a fraction of the data from the target task.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.