Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Same Representation, Different Attentions: Shareable Sentence Representation Learning from Multiple Tasks (1804.08139v1)

Published 22 Apr 2018 in cs.CL and cs.AI

Abstract: Distributed representation plays an important role in deep learning based natural language processing. However, the representation of a sentence often varies in different tasks, which is usually learned from scratch and suffers from the limited amounts of training data. In this paper, we claim that a good sentence representation should be invariant and can benefit the various subsequent tasks. To achieve this purpose, we propose a new scheme of information sharing for multi-task learning. More specifically, all tasks share the same sentence representation and each task can select the task-specific information from the shared sentence representation with attention mechanism. The query vector of each task's attention could be either static parameters or generated dynamically. We conduct extensive experiments on 16 different text classification tasks, which demonstrate the benefits of our architecture.

Citations (30)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.