Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Finer Tight Bounds for Coloring on Clique-Width (1804.07975v1)

Published 21 Apr 2018 in cs.CC and cs.DS

Abstract: We revisit the complexity of the classical $k$-Coloring problem parameterized by clique-width. This is a very well-studied problem that becomes highly intractable when the number of colors $k$ is large. However, much less is known on its complexity for small, concrete values of $k$. In this paper, we completely determine the complexity of $k$-Coloring parameterized by clique-width for any fixed $k$, under the SETH. Specifically, we show that for all $k\ge 3,\epsilon>0$, $k$-Coloring cannot be solved in time $O*((2k-2-\epsilon){cw})$, and give an algorithm running in time $O*((2k-2){cw})$. Thus, if the SETH is true, $2k-2$ is the "correct" base of the exponent for every $k$. Along the way, we also consider the complexity of $k$-Coloring parameterized by the related parameter modular treewidth ($mtw$). In this case we show that the "correct" running time, under the SETH, is $O*({k\choose \lfloor k/2\rfloor}{mtw})$. If we base our results on a weaker assumption (the ETH), they imply that $k$-Coloring cannot be solved in time $n{o(cw)}$, even on instances with $O(\log n)$ colors.

Citations (30)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)