Papers
Topics
Authors
Recent
2000 character limit reached

Direct Network Transfer: Transfer Learning of Sentence Embeddings for Semantic Similarity

Published 20 Apr 2018 in cs.CL | (1804.07835v2)

Abstract: Sentence encoders, which produce sentence embeddings using neural networks, are typically evaluated by how well they transfer to downstream tasks. This includes semantic similarity, an important task in natural language understanding. Although there has been much work dedicated to building sentence encoders, the accompanying transfer learning techniques have received relatively little attention. In this paper, we propose a transfer learning setting specialized for semantic similarity, which we refer to as direct network transfer. Through experiments on several standard text similarity datasets, we show that applying direct network transfer to existing encoders can lead to state-of-the-art performance. Additionally, we compare several approaches to transfer sentence encoders to semantic similarity tasks, showing that the choice of transfer learning setting greatly affects the performance in many cases, and differs by encoder and dataset.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.