Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Self-paced Regularization Framework for Partial-Label Learning (1804.07759v2)

Published 20 Apr 2018 in cs.LG, cs.AI, and stat.ML

Abstract: Partial label learning (PLL) aims to solve the problem where each training instance is associated with a set of candidate labels, one of which is the correct label. Most PLL algorithms try to disambiguate the candidate label set, by either simply treating each candidate label equally or iteratively identifying the true label. Nonetheless, existing algorithms usually treat all labels and instances equally, and the complexities of both labels and instances are not taken into consideration during the learning stage. Inspired by the successful application of self-paced learning strategy in machine learning field, we integrate the self-paced regime into the partial label learning framework and propose a novel Self-Paced Partial-Label Learning (SP-PLL) algorithm, which could control the learning process to alleviate the problem by ranking the priorities of the training examples together with their candidate labels during each learning iteration. Extensive experiments and comparisons with other baseline methods demonstrate the effectiveness and robustness of the proposed method.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Gengyu Lyu (5 papers)
  2. Songhe Feng (17 papers)
  3. Congyang Lang (1 paper)
Citations (42)

Summary

We haven't generated a summary for this paper yet.