Factorising AMR generation through syntax (1804.07707v2)
Abstract: Generating from Abstract Meaning Representation (AMR) is an underspecified problem, as many syntactic decisions are not constrained by the semantic graph. To explicitly account for this underspecification, we break down generating from AMR into two steps: first generate a syntactic structure, and then generate the surface form. We show that decomposing the generation process this way leads to state-of-the-art single model performance generating from AMR without additional unlabelled data. We also demonstrate that we can generate meaning-preserving syntactic paraphrases of the same AMR graph, as judged by humans.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.