Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Two Use Cases of Machine Learning for SDN-Enabled IP/Optical Networks: Traffic Matrix Prediction and Optical Path Performance Prediction (1804.07433v2)

Published 20 Apr 2018 in cs.NI, cs.LG, and stat.ML

Abstract: We describe two applications of machine learning in the context of IP/Optical networks. The first one allows agile management of resources at a core IP/Optical network by using machine learning for short-term and long-term prediction of traffic flows and joint global optimization of IP and optical layers using colorless/directionless (CD) flexible ROADMs. Multilayer coordination allows for significant cost savings, flexible new services to meet dynamic capacity needs, and improved robustness by being able to proactively adapt to new traffic patterns and network conditions. The second application is important as we migrate our metro networks to Open ROADM networks, to allow physical routing without the need for detailed knowledge of optical parameters. We discuss a proof-of-concept study, where detailed performance data for wavelengths on a current flexible ROADM network is used for machine learning to predict the optical performance of each wavelength. Both applications can be efficiently implemented by using a SDN (Software Defined Network) controller.

Citations (53)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube