Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Finding Cliques in Social Networks: A New Distribution-Free Model (1804.07431v1)

Published 20 Apr 2018 in math.CO, cs.DM, cs.DS, and cs.SI

Abstract: We propose a new distribution-free model of social networks. Our definitions are motivated by one of the most universal signatures of social networks, triadic closure---the property that pairs of vertices with common neighbors tend to be adjacent. Our most basic definition is that of a "$c$-closed" graph, where for every pair of vertices $u,v$ with at least $c$ common neighbors, $u$ and $v$ are adjacent. We study the classic problem of enumerating all maximal cliques, an important task in social network analysis. We prove that this problem is fixed-parameter tractable with respect to $c$ on $c$-closed graphs. Our results carry over to "weakly $c$-closed graphs", which only require a vertex deletion ordering that avoids pairs of non-adjacent vertices with $c$ common neighbors. Numerical experiments show that well-studied social networks tend to be weakly $c$-closed for modest values of $c$.

Citations (37)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.