Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

A Predictive Model for Notional Anaphora in English (1804.07375v1)

Published 19 Apr 2018 in cs.CL

Abstract: Notional anaphors are pronouns which disagree with their antecedents' grammatical categories for notional reasons, such as plural to singular agreement in: 'the government ... they'. Since such cases are rare and conflict with evidence from strictly agreeing cases ('the government ... it'), they present a substantial challenge to both coreference resolution and referring expression generation. Using the OntoNotes corpus, this paper takes an ensemble approach to predicting English notional anaphora in context on the basis of the largest empirical data to date. In addition to state of the art prediction accuracy, the results suggest that theoretical approaches positing a plural construal at the antecedent's utterance are insufficient, and that circumstances at the anaphor's utterance location, as well as global factors such as genre, have a strong effect on the choice of referring expression.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.