Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Attacking Convolutional Neural Network using Differential Evolution (1804.07062v1)

Published 19 Apr 2018 in cs.CV

Abstract: The output of Convolutional Neural Networks (CNN) has been shown to be discontinuous which can make the CNN image classifier vulnerable to small well-tuned artificial perturbations. That is, images modified by adding such perturbations(i.e. adversarial perturbations) that make little difference to human eyes, can completely alter the CNN classification results. In this paper, we propose a practical attack using differential evolution(DE) for generating effective adversarial perturbations. We comprehensively evaluate the effectiveness of different types of DEs for conducting the attack on different network structures. The proposed method is a black-box attack which only requires the miracle feedback of the target CNN systems. The results show that under strict constraints which simultaneously control the number of pixels changed and overall perturbation strength, attacking can achieve 72.29%, 78.24% and 61.28% non-targeted attack success rates, with 88.68%, 99.85% and 73.07% confidence on average, on three common types of CNNs. The attack only requires modifying 5 pixels with 20.44, 14.76 and 22.98 pixel values distortion. Thus, the result shows that the current DNNs are also vulnerable to such simpler black-box attacks even under very limited attack conditions.

Citations (44)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.