Papers
Topics
Authors
Recent
2000 character limit reached

Towards the next generation of exergames: Flexible and personalised assessment-based identification of tennis swings (1804.06948v2)

Published 18 Apr 2018 in cs.HC and cs.CY

Abstract: Current exergaming sensors and inertial systems attached to sports equipment or the human body can provide quantitative information about the movement or impact e.g. with the ball. However, the scope of these technologies is not to qualitatively assess sports technique at a personalised level, similar to a coach during training or replay analysis. The aim of this paper is to demonstrate a novel approach to automate identification of tennis swings executed with erroneous technique without recorded ball impact. The presented spatiotemporal transformations relying on motion gradient vector flow and polynomial regression with RBF classifier, can identify previously unseen erroneous swings (84.5-94.6%). The presented solution is able to learn from a small dataset and capture two subjective swing-technique assessment criteria from a coach. Personalised and flexible assessment criteria required for players of diverse skill levels and various coaching scenarios were demonstrated by assigning different labelling criteria for identifying similar spatiotemporal patterns of tennis swings.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.