Improving information centrality of a node in complex networks by adding edges (1804.06540v1)
Abstract: The problem of increasing the centrality of a network node arises in many practical applications. In this paper, we study the optimization problem of maximizing the information centrality $I_v$ of a given node $v$ in a network with $n$ nodes and $m$ edges, by creating $k$ new edges incident to $v$. Since $I_v$ is the reciprocal of the sum of resistance distance $\mathcal{R}_v$ between $v$ and all nodes, we alternatively consider the problem of minimizing $\mathcal{R}_v$ by adding $k$ new edges linked to $v$. We show that the objective function is monotone and supermodular. We provide a simple greedy algorithm with an approximation factor $\left(1-\frac{1}{e}\right)$ and $O(n3)$ running time. To speed up the computation, we also present an algorithm to compute $\left(1-\frac{1}{e}-\epsilon\right)$-approximate resistance distance $\mathcal{R}_v$ after iteratively adding $k$ edges, the running time of which is $\widetilde{O} (mk\epsilon{-2})$ for any $\epsilon>0$, where the $\widetilde{O} (\cdot)$ notation suppresses the ${\rm poly} (\log n)$ factors. We experimentally demonstrate the effectiveness and efficiency of our proposed algorithms.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.