Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Two-Player Games for Efficient Non-Convex Constrained Optimization (1804.06500v2)

Published 17 Apr 2018 in cs.LG, cs.GT, math.OC, and stat.ML

Abstract: In recent years, constrained optimization has become increasingly relevant to the machine learning community, with applications including Neyman-Pearson classification, robust optimization, and fair machine learning. A natural approach to constrained optimization is to optimize the Lagrangian, but this is not guaranteed to work in the non-convex setting, and, if using a first-order method, cannot cope with non-differentiable constraints (e.g. constraints on rates or proportions). The Lagrangian can be interpreted as a two-player game played between a player who seeks to optimize over the model parameters, and a player who wishes to maximize over the Lagrange multipliers. We propose a non-zero-sum variant of the Lagrangian formulation that can cope with non-differentiable--even discontinuous--constraints, which we call the "proxy-Lagrangian". The first player minimizes external regret in terms of easy-to-optimize "proxy constraints", while the second player enforces the original constraints by minimizing swap regret. For this new formulation, as for the Lagrangian in the non-convex setting, the result is a stochastic classifier. For both the proxy-Lagrangian and Lagrangian formulations, however, we prove that this classifier, instead of having unbounded size, can be taken to be a distribution over no more than m+1 models (where m is the number of constraints). This is a significant improvement in practical terms.

Citations (115)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.