Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A time- and space-optimal algorithm for the many-visits TSP (1804.06361v4)

Published 17 Apr 2018 in cs.DS

Abstract: The many-visits traveling salesperson problem (MV-TSP) asks for an optimal tour of $n$ cities that visits each city $c$ a prescribed number $k_c$ of times. Travel costs may be asymmetric, and visiting a city twice in a row may incur a non-zero cost. The MV-TSP problem finds applications in scheduling, geometric approximation, and Hamiltonicity of certain graph families. The fastest known algorithm for MV-TSP is due to Cosmadakis and Papadimitriou (SICOMP, 1984). It runs in time $n{O(n)} + O(n3 \log \sum_c k_c )$ and requires $n{\Theta(n)}$ space. An interesting feature of the Cosmadakis-Papadimitriou algorithm is its \emph{logarithmic} dependence on the total length $\sum_c k_c$ of the tour, allowing the algorithm to handle instances with very long tours. The \emph{superexponential} dependence on the number of cities in both the time and space complexity, however, renders the algorithm impractical for all but the narrowest range of this parameter. In this paper we improve upon the Cosmadakis-Papadimitriou algorithm, giving an MV-TSP algorithm that runs in time $2{O(n)}$, i.e.\ \emph{single-exponential} in the number of cities, using \emph{polynomial} space. Our algorithm is deterministic, and arguably both simpler and easier to analyse than the original approach of Cosmadakis and Papadimitriou. It involves an optimization over directed spanning trees and a recursive, centroid-based decomposition of trees.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube