Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

LCMR: Local and Centralized Memories for Collaborative Filtering with Unstructured Text (1804.06201v2)

Published 17 Apr 2018 in cs.IR, cs.AI, and cs.CL

Abstract: Collaborative filtering (CF) is the key technique for recommender systems. Pure CF approaches exploit the user-item interaction data (e.g., clicks, likes, and views) only and suffer from the sparsity issue. Items are usually associated with content information such as unstructured text (e.g., abstracts of articles and reviews of products). CF can be extended to leverage text. In this paper, we develop a unified neural framework to exploit interaction data and content information seamlessly. The proposed framework, called LCMR, is based on memory networks and consists of local and centralized memories for exploiting content information and interaction data, respectively. By modeling content information as local memories, LCMR attentively learns what to exploit with the guidance of user-item interaction. On real-world datasets, LCMR shows better performance by comparing with various baselines in terms of the hit ratio and NDCG metrics. We further conduct analyses to understand how local and centralized memories work for the proposed framework.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.