Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Boosting Framework of Factorization Machine (1804.06027v1)

Published 17 Apr 2018 in cs.LG and stat.ML

Abstract: Recently, Factorization Machines (FM) has become more and more popular for recommendation systems, due to its effectiveness in finding informative interactions between features. Usually, the weights for the interactions is learnt as a low rank weight matrix, which is formulated as an inner product of two low rank matrices. This low rank can help improve the generalization ability of Factorization Machines. However, to choose the rank properly, it usually needs to run the algorithm for many times using different ranks, which clearly is inefficient for some large-scale datasets. To alleviate this issue, we propose an Adaptive Boosting framework of Factorization Machines (AdaFM), which can adaptively search for proper ranks for different datasets without re-training. Instead of using a fixed rank for FM, the proposed algorithm will adaptively gradually increases its rank according to its performance until the performance does not grow, using boosting strategy. To verify the performance of our proposed framework, we conduct an extensive set of experiments on many real-world datasets. Encouraging empirical results shows that the proposed algorithms are generally more effective than state-of-the-art other Factorization Machines.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.