Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Model-Free Linear Quadratic Control via Reduction to Expert Prediction (1804.06021v3)

Published 17 Apr 2018 in cs.LG, math.OC, and stat.ML

Abstract: Model-free approaches for reinforcement learning (RL) and continuous control find policies based only on past states and rewards, without fitting a model of the system dynamics. They are appealing as they are general purpose and easy to implement; however, they also come with fewer theoretical guarantees than model-based RL. In this work, we present a new model-free algorithm for controlling linear quadratic (LQ) systems, and show that its regret scales as $O(T{\xi+2/3})$ for any small $\xi>0$ if time horizon satisfies $T>C{1/\xi}$ for a constant $C$. The algorithm is based on a reduction of control of Markov decision processes to an expert prediction problem. In practice, it corresponds to a variant of policy iteration with forced exploration, where the policy in each phase is greedy with respect to the average of all previous value functions. This is the first model-free algorithm for adaptive control of LQ systems that provably achieves sublinear regret and has a polynomial computation cost. Empirically, our algorithm dramatically outperforms standard policy iteration, but performs worse than a model-based approach.

Citations (92)

Summary

We haven't generated a summary for this paper yet.