Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 418 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

RFCDE: Random Forests for Conditional Density Estimation (1804.05753v2)

Published 16 Apr 2018 in stat.ML and cs.LG

Abstract: Random forests is a common non-parametric regression technique which performs well for mixed-type data and irrelevant covariates, while being robust to monotonic variable transformations. Existing random forest implementations target regression or classification. We introduce the RFCDE package for fitting random forest models optimized for nonparametric conditional density estimation, including joint densities for multiple responses. This enables analysis of conditional probability distributions which is useful for propagating uncertainty and of joint distributions that describe relationships between multiple responses and covariates. RFCDE is released under the MIT open-source license and can be accessed at https://github.com/tpospisi/rfcde . Both R and Python versions, which call a common C++ library, are available.

Citations (28)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com