BinarEye: An Always-On Energy-Accuracy-Scalable Binary CNN Processor With All Memory On Chip in 28nm CMOS (1804.05554v1)
Abstract: This paper introduces BinarEye: a digital processor for always-on Binary Convolutional Neural Networks. The chip maximizes data reuse through a Neuron Array exploiting local weight Flip-Flops. It stores full network models and feature maps and hence requires no off-chip bandwidth, which leads to a 230 1b-TOPS/W peak efficiency. Its 3 levels of flexibility - (a) weight reconfiguration, (b) a programmable network depth and (c) a programmable network width - allow trading energy for accuracy depending on the task's requirements. BinarEye's full system input-to-label energy consumption ranges from 14.4uJ/f for 86% CIFAR-10 and 98% owner recognition down to 0.92uJ/f for 94% face detection at up to 1700 frames per second. This is 3-12-70x more efficient than the state-of-the-art at on-par accuracy.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.