Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

BinarEye: An Always-On Energy-Accuracy-Scalable Binary CNN Processor With All Memory On Chip in 28nm CMOS (1804.05554v1)

Published 16 Apr 2018 in cs.DC and cs.NE

Abstract: This paper introduces BinarEye: a digital processor for always-on Binary Convolutional Neural Networks. The chip maximizes data reuse through a Neuron Array exploiting local weight Flip-Flops. It stores full network models and feature maps and hence requires no off-chip bandwidth, which leads to a 230 1b-TOPS/W peak efficiency. Its 3 levels of flexibility - (a) weight reconfiguration, (b) a programmable network depth and (c) a programmable network width - allow trading energy for accuracy depending on the task's requirements. BinarEye's full system input-to-label energy consumption ranges from 14.4uJ/f for 86% CIFAR-10 and 98% owner recognition down to 0.92uJ/f for 94% face detection at up to 1700 frames per second. This is 3-12-70x more efficient than the state-of-the-art at on-par accuracy.

Citations (70)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.