Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Novel Low-cost FPGA-based Real-time Object Tracking System (1804.05535v2)

Published 16 Apr 2018 in cs.CV

Abstract: In current visual object tracking system, the CPU or GPU-based visual object tracking systems have high computational cost and consume a prohibitive amount of power. Therefore, in this paper, to reduce the computational burden of the Camshift algorithm, we propose a novel visual object tracking algorithm by exploiting the properties of the binary classifier and Kalman predictor. Moreover, we present a low-cost FPGA-based real-time object tracking hardware architecture. Extensive evaluations on OTB benchmark demonstrate that the proposed system has extremely compelling real-time, stability and robustness. The evaluation results show that the accuracy of our algorithm is about 48%, and the average speed is about 309 frames per second.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.