Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Learning Control Lyapunov Functions from Counterexamples and Demonstrations (1804.05285v5)

Published 14 Apr 2018 in cs.SY

Abstract: We present a technique for learning control Lyapunov-like functions, which are used in turn to synthesize controllers for nonlinear dynamical systems that can stabilize the system, or satisfy specifications such as remaining inside a safe set, or eventually reaching a target set while remaining inside a safe set. The learning framework uses a demonstrator that implements a black-box, untrusted strategy presumed to solve the problem of interest, a learner that poses finitely many queries to the demonstrator to infer a candidate function, and a verifier that checks whether the current candidate is a valid control Lyapunov function. The overall learning framework is iterative, eliminating a set of candidates on each iteration using the counterexamples discovered by the verifier and the demonstrations over these counterexamples. We prove its convergence using ellipsoidal approximation techniques from convex optimization. We also implement this scheme using nonlinear MPC controllers to serve as demonstrators for a set of state and trajectory stabilization problems for nonlinear dynamical systems. We show how the verifier can be constructed efficiently using convex relaxations of the verification problem for polynomial systems to semi-definite programming (SDP) problem instances. Our approach is able to synthesize relatively simple polynomial control Lyapunov functions, and in that process replace the MPC using a guaranteed and computationally less expensive controller.

Citations (66)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube