Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

OmicsMapNet: Transforming omics data to take advantage of Deep Convolutional Neural Network for discovery (1804.05283v2)

Published 14 Apr 2018 in stat.ML, cs.AI, and cs.LG

Abstract: We developed OmicsMapNet approach to take advantage of existing deep leaning frameworks to analyze high-dimensional omics data as 2-dimensional images. The omics data of individual samples were first rearranged into 2D images in which molecular features related in functions, ontologies, or other relationships were organized in spatially adjacent and patterned locations. Deep learning neural networks were trained to classify the images. Molecular features informative of classes of different phenotypes were subsequently identified. As an example, we used the KEGG BRITE database to rearrange RNA-Seq expression data of TCGA diffuse glioma samples as treemaps to capture the functional hierarchical structure of genes in 2D images. Deep Convolutional Neural Networks (CNN) were derived using tools from TensorFlow to learn the grade of TCGA LGG and GBM samples with relatively high accuracy. The most contributory features in the trained CNN were confirmed in pathway analysis for their plausible functional involvement.

Citations (25)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube