Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Select, Attend, and Transfer: Light, Learnable Skip Connections (1804.05181v3)

Published 14 Apr 2018 in cs.CV

Abstract: Skip connections in deep networks have improved both segmentation and classification performance by facilitating the training of deeper network architectures, and reducing the risks for vanishing gradients. They equip encoder-decoder-like networks with richer feature representations, but at the cost of higher memory usage, computation, and possibly resulting in transferring non-discriminative feature maps. In this paper, we focus on improving skip connections used in segmentation networks (e.g., U-Net, V-Net, and The One Hundred Layers Tiramisu (DensNet) architectures). We propose light, learnable skip connections which learn to first select the most discriminative channels and then attend to the most discriminative regions of the selected feature maps. The output of the proposed skip connections is a unique feature map which not only reduces the memory usage and network parameters to a high extent, but also improves segmentation accuracy. We evaluate the proposed method on three different 2D and volumetric datasets and demonstrate that the proposed light, learnable skip connections can outperform the traditional heavy skip connections in terms of segmentation accuracy, memory usage, and number of network parameters.

Citations (19)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.