Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Road Segmentation Using CNN with GRU (1804.05164v1)

Published 14 Apr 2018 in cs.CV and eess.IV

Abstract: This paper presents an accurate and fast algorithm for road segmentation using convolutional neural network (CNN) and gated recurrent units (GRU). For autonomous vehicles, road segmentation is a fundamental task that can provide the drivable area for path planning. The existing deep neural network based segmentation algorithms usually take a very deep encoder-decoder structure to fuse pixels, which requires heavy computations, large memory and long processing time. Hereby, a CNN-GRU network model is proposed and trained to perform road segmentation using data captured by the front camera of a vehicle. GRU network obtains a long spatial sequence with lower computational complexity, comparing to traditional encoder-decoder architecture. The proposed road detector is evaluated on the KITTI road benchmark and achieves high accuracy for road segmentation at real-time processing speed.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.