Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

HyperFusion-Net: Densely Reflective Fusion for Salient Object Detection (1804.05142v1)

Published 14 Apr 2018 in cs.CV

Abstract: Salient object detection (SOD), which aims to find the most important region of interest and segment the relevant object/item in that area, is an important yet challenging vision task. This problem is inspired by the fact that human seems to perceive main scene elements with high priorities. Thus, accurate detection of salient objects in complex scenes is critical for human-computer interaction. In this paper, we present a novel feature learning framework for SOD, in which we cast the SOD as a pixel-wise classification problem. The proposed framework utilizes a densely hierarchical feature fusion network, named HyperFusion-Net, automatically predicts the most important area and segments the associated objects in an end-to-end manner. Specifically, inspired by the human perception system and image reflection separation, we first decompose input images into reflective image pairs by content-preserving transforms. Then, the complementary information of reflective image pairs is jointly extracted by an interweaved convolutional neural network (ICNN) and hierarchically combined with a hyper-dense fusion mechanism. Based on the fused multi-scale features, our method finally achieves a promising way of predicting SOD. As shown in our extensive experiments, the proposed method consistently outperforms other state-of-the-art methods on seven public datasets with a large margin.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.