Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

SpatioTemporal Feature Integration and Model Fusion for Full Reference Video Quality Assessment (1804.04813v1)

Published 13 Apr 2018 in eess.IV and cs.MM

Abstract: Perceptual video quality assessment models are either frame-based or video-based, i.e., they apply spatiotemporal filtering or motion estimation to capture temporal video distortions. Despite their good performance on video quality databases, video-based approaches are time-consuming and harder to efficiently deploy. To balance between high performance and computational efficiency, Netflix developed the Video Multi-method Assessment Fusion (VMAF) framework, which integrates multiple quality-aware features to predict video quality. Nevertheless, this fusion framework does not fully exploit temporal video quality measurements which are relevant to temporal video distortions. To this end, we propose two improvements to the VMAF framework: SpatioTemporal VMAF and Ensemble VMAF. Both algorithms exploit efficient temporal video features which are fed into a single or multiple regression models. To train our models, we designed a large subjective database and evaluated the proposed models against state-of-the-art approaches. The compared algorithms will be made available as part of the open source package in https://github.com/Netflix/vmaf.

Citations (93)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.