Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Asynch-SGBDT: Asynchronous Parallel Stochastic Gradient Boosting Decision Tree based on Parameters Server (1804.04659v4)

Published 12 Apr 2018 in cs.LG, cs.DC, and stat.ML

Abstract: In AI research and industry, machine learning is the most widely used tool. One of the most important machine learning algorithms is Gradient Boosting Decision Tree, i.e. GBDT whose training process needs considerable computational resources and time. To shorten GBDT training time, many works tried to apply GBDT on Parameter Server. However, those GBDT algorithms are synchronous parallel algorithms which fail to make full use of Parameter Server. In this paper, we examine the possibility of using asynchronous parallel methods to train GBDT model and name this algorithm as asynch-SGBDT (asynchronous parallel stochastic gradient boosting decision tree). Our theoretical and experimental results indicate that the scalability of asynch-SGBDT is influenced by the sample diversity of datasets, sampling rate, step length and the setting of GBDT tree. Experimental results also show asynch-SGBDT training process reaches a linear speedup in asynchronous parallel manner when datasets and GBDT trees meet high scalability requirements.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.