Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Outline Objects using Deep Reinforcement Learning (1804.04603v2)

Published 10 Apr 2018 in cs.CV and cs.AI

Abstract: Image segmentation needs both local boundary position information and global object context information. The performance of the recent state-of-the-art method, fully convolutional networks, reaches a bottleneck due to the neural network limit after balancing between the two types of information simultaneously in an end-to-end training style. To overcome this problem, we divide the semantic image segmentation into temporal subtasks. First, we find a possible pixel position of some object boundary; then trace the boundary at steps within a limited length until the whole object is outlined. We present the first deep reinforcement learning approach to semantic image segmentation, called DeepOutline, which outperforms other algorithms in Coco detection leaderboard in the middle and large size person category in Coco val2017 dataset. Meanwhile, it provides an insight into a divide and conquer way by reinforcement learning on computer vision problems.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.