Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

MGGAN: Solving Mode Collapse using Manifold Guided Training (1804.04391v1)

Published 12 Apr 2018 in cs.CV

Abstract: Mode collapse is a critical problem in training generative adversarial networks. To alleviate mode collapse, several recent studies introduce new objective functions, network architectures or alternative training schemes. However, their achievement is often the result of sacrificing the image quality. In this paper, we propose a new algorithm, namely a manifold guided generative adversarial network (MGGAN), which leverages a guidance network on existing GAN architecture to induce generator learning all modes of data distribution. Based on extensive evaluations, we show that our algorithm resolves mode collapse without losing image quality. In particular, we demonstrate that our algorithm is easily extendable to various existing GANs. Experimental analysis justifies that the proposed algorithm is an effective and efficient tool for training GANs.

Citations (70)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.