Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Amobee at SemEval-2018 Task 1: GRU Neural Network with a CNN Attention Mechanism for Sentiment Classification (1804.04380v1)

Published 12 Apr 2018 in cs.CL and stat.ML

Abstract: This paper describes the participation of Amobee in the shared sentiment analysis task at SemEval 2018. We participated in all the English sub-tasks and the Spanish valence tasks. Our system consists of three parts: training task-specific word embeddings, training a model consisting of gated-recurrent-units (GRU) with a convolution neural network (CNN) attention mechanism and training stacking-based ensembles for each of the sub-tasks. Our algorithm reached 3rd and 1st places in the valence ordinal classification sub-tasks in English and Spanish, respectively.

Citations (28)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.