Papers
Topics
Authors
Recent
2000 character limit reached

A Capsule Network-based Embedding Model for Search Personalization (1804.04266v2)

Published 12 Apr 2018 in cs.CL and cs.IR

Abstract: Search personalization aims to tailor search results to each specific user based on the user's personal interests and preferences (i.e., the user profile). Recent research approaches to search personalization by modelling the potential 3-way relationship between the submitted query, the user and the search results (i.e., documents). That relationship is then used to personalize the search results to that user. In this paper, we introduce a novel embedding model based on capsule network, which recently is a breakthrough in deep learning, to model the 3-way relationships for search personalization. In the model, each user (submitted query or returned document) is embedded by a vector in the same vector space. The 3-way relationship is described as a triple of (query, user, document) which is then modeled as a 3-column matrix containing the three embedding vectors. After that, the 3-column matrix is fed into a deep learning architecture to re-rank the search results returned by a basis ranker. Experimental results on query logs from a commercial web search engine show that our model achieves better performances than the basis ranker as well as strong search personalization baselines.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.