Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

On Geodesically Convex Formulations for the Brascamp-Lieb Constant (1804.04051v1)

Published 11 Apr 2018 in cs.DS, math.CA, math.MG, and math.OC

Abstract: We consider two non-convex formulations for computing the optimal constant in the Brascamp-Lieb inequality corresponding to a given datum, and show that they are geodesically log-concave on the manifold of positive definite matrices endowed with the Riemannian metric corresponding to the Hessian of the log-determinant function. The first formulation is present in the work of Lieb and the second is inspired by the work of Bennett et al. Recent works of Garg et al.and Allen-Zhu et al. also imply a geodesically log-concave formulation of the Brascamp-Lieb constant through a reduction to the operator scaling problem. However, the dimension of the arising optimization problem in their reduction depends exponentially on the number of bits needed to describe the Brascamp-Lieb datum. The formulations presented here have dimensions that are polynomial in the bit complexity of the input datum.

Citations (26)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.