Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 126 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

The Monge-Kantorovich Optimal Transport Distance for Image Comparison (1804.03531v1)

Published 8 Apr 2018 in cs.CV

Abstract: This paper focuses on the Monge-Kantorovich formulation of the optimal transport problem and the associated $L2$ Wasserstein distance. We use the $L2$ Wasserstein distance in the Nearest Neighbour (NN) machine learning architecture to demonstrate the potential power of the optimal transport distance for image comparison. We compare the Wasserstein distance to other established distances - including the partial differential equation (PDE) formulation of the optimal transport problem - and demonstrate that on the well known MNIST optical character recognition dataset, it achieves excellent results.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.