Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Combinations of Qualitative Winning for Stochastic Parity Games (1804.03453v1)

Published 10 Apr 2018 in cs.LO

Abstract: We study Markov decision processes and turn-based stochastic games with parity conditions. There are three qualitative winning criteria, namely, sure winning, which requires all paths must satisfy the condition, almost-sure winning, which requires the condition is satisfied with probability~1, and limit-sure winning, which requires the condition is satisfied with probability arbitrarily close to~1. We study the combination of these criteria for parity conditions, e.g., there are two parity conditions one of which must be won surely, and the other almost-surely. The problem has been studied recently by Berthon et.~al for MDPs with combination of sure and almost-sure winning, under infinite-memory strategies, and the problem has been established to be in NP $\cap$ coNP. Even in MDPs there is a difference between finite-memory and infinite-memory strategies. Our main results for combination of sure and almost-sure winning are as follows: (a)~we show that for MDPs with finite-memory strategies the problem lie in NP $\cap$ coNP; (b)~we show that for turn-based stochastic games the problem is coNP-complete, both for finite-memory and infinite-memory strategies; and (c)~we present algorithmic results for the finite-memory case, both for MDPs and turn-based stochastic games, by reduction to non-stochastic parity games. In addition we show that all the above results also carry over to combination of sure and limit-sure winning, and results for all other combinations can be derived from existing results in the literature. Thus we present a complete picture for the study of combinations of qualitative winning criteria for parity conditions in MDPs and turn-based stochastic games.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.