Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Contextual Search via Intrinsic Volumes (1804.03195v2)

Published 9 Apr 2018 in cs.DS, cs.LG, and math.MG

Abstract: We study the problem of contextual search, a multidimensional generalization of binary search that captures many problems in contextual decision-making. In contextual search, a learner is trying to learn the value of a hidden vector $v \in [0,1]d$. Every round the learner is provided an adversarially-chosen context $u_t \in \mathbb{R}d$, submits a guess $p_t$ for the value of $\langle u_t, v\rangle$, learns whether $p_t < \langle u_t, v\rangle$, and incurs loss $\ell(\langle u_t, v\rangle, p_t)$ (for some loss function $\ell$). The learner's goal is to minimize their total loss over the course of $T$ rounds. We present an algorithm for the contextual search problem for the symmetric loss function $\ell(\theta, p) = |\theta - p|$ that achieves $O_{d}(1)$ total loss. We present a new algorithm for the dynamic pricing problem (which can be realized as a special case of the contextual search problem) that achieves $O_{d}(\log \log T)$ total loss, improving on the previous best known upper bounds of $O_{d}(\log T)$ and matching the known lower bounds (up to a polynomial dependence on $d$). Both algorithms make significant use of ideas from the field of integral geometry, most notably the notion of intrinsic volumes of a convex set. To the best of our knowledge this is the first application of intrinsic volumes to algorithm design.

Citations (43)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.