Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Distribution-Aware Binarization of Neural Networks for Sketch Recognition (1804.02941v1)

Published 9 Apr 2018 in cs.CV

Abstract: Deep neural networks are highly effective at a range of computational tasks. However, they tend to be computationally expensive, especially in vision-related problems, and also have large memory requirements. One of the most effective methods to achieve significant improvements in computational/spatial efficiency is to binarize the weights and activations in a network. However, naive binarization results in accuracy drops when applied to networks for most tasks. In this work, we present a highly generalized, distribution-aware approach to binarizing deep networks that allows us to retain the advantages of a binarized network, while reducing accuracy drops. We also develop efficient implementations for our proposed approach across different architectures. We present a theoretical analysis of the technique to show the effective representational power of the resulting layers, and explore the forms of data they model best. Experiments on popular datasets show that our technique offers better accuracies than naive binarization, while retaining the same benefits that binarization provides - with respect to run-time compression, reduction of computational costs, and power consumption.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.