Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 59 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Distributed Non-Convex First-Order Optimization and Information Processing: Lower Complexity Bounds and Rate Optimal Algorithms (1804.02729v4)

Published 8 Apr 2018 in math.OC, cs.DC, cs.IT, and math.IT

Abstract: We consider a class of popular distributed non-convex optimization problems, in which agents connected by a network $\mathcal{G}$ collectively optimize a sum of smooth (possibly non-convex) local objective functions. We address the following question: if the agents can only access the gradients of local functions, what are the fastest rates that any distributed algorithms can achieve, and how to achieve those rates. First, we show that there exist difficult problem instances, such that it takes a class of distributed first-order methods at least $\mathcal{O}(1/\sqrt{\xi(\mathcal{G})} \times \bar{L} /{\epsilon})$ communication rounds to achieve certain $\epsilon$-solution [where $\xi(\mathcal{G})$ denotes the spectral gap of the graph Laplacian matrix, and $\bar{L}$ is some Lipschitz constant]. Second, we propose (near) optimal methods whose rates match the developed lower rate bound (up to a polylog factor). The key in the algorithm design is to properly embed the classical polynomial filtering techniques into modern first-order algorithms. To the best of our knowledge, this is the first time that lower rate bounds and optimal methods have been developed for distributed non-convex optimization problems.

Citations (45)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.