Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Evaluating historical text normalization systems: How well do they generalize? (1804.02545v2)

Published 7 Apr 2018 in cs.CL

Abstract: We highlight several issues in the evaluation of historical text normalization systems that make it hard to tell how well these systems would actually work in practice---i.e., for new datasets or languages; in comparison to more na\"ive systems; or as a preprocessing step for downstream NLP tools. We illustrate these issues and exemplify our proposed evaluation practices by comparing two neural models against a na\"ive baseline system. We show that the neural models generalize well to unseen words in tests on five languages; nevertheless, they provide no clear benefit over the na\"ive baseline for downstream POS tagging of an English historical collection. We conclude that future work should include more rigorous evaluation, including both intrinsic and extrinsic measures where possible.

Citations (23)

Summary

We haven't generated a summary for this paper yet.