Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Monocular Semantic Occupancy Grid Mapping with Convolutional Variational Encoder-Decoder Networks (1804.02176v3)

Published 6 Apr 2018 in cs.RO and cs.CV

Abstract: In this work, we research and evaluate end-to-end learning of monocular semantic-metric occupancy grid mapping from weak binocular ground truth. The network learns to predict four classes, as well as a camera to bird's eye view mapping. At the core, it utilizes a variational encoder-decoder network that encodes the front-view visual information of the driving scene and subsequently decodes it into a 2-D top-view Cartesian coordinate system. The evaluations on Cityscapes show that the end-to-end learning of semantic-metric occupancy grids outperforms the deterministic mapping approach with flat-plane assumption by more than 12% mean IoU. Furthermore, we show that the variational sampling with a relatively small embedding vector brings robustness against vehicle dynamic perturbations, and generalizability for unseen KITTI data. Our network achieves real-time inference rates of approx. 35 Hz for an input image with a resolution of 256x512 pixels and an output map with 64x64 occupancy grid cells using a Titan V GPU.

Citations (153)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.