Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 89 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

An End-to-end Argument in Mechanism Design (Prior-independent Auctions for Budgeted Agents) (1804.01977v2)

Published 5 Apr 2018 in cs.GT

Abstract: This paper considers prior-independent mechanism design, namely identifying a single mechanism that has near optimal performance on every prior distribution. We show that mechanisms with truthtelling equilibria, a.k.a., revelation mechanisms, do not always give optimal prior-independent mechanisms and we define the revelation gap to quantify the non-optimality of revelation mechanisms. This study suggests that it is important to develop a theory for the design of non-revelation mechanisms. Our analysis focuses on welfare maximization in single-item auctions for agents with budgets and a natural regularity assumption on their distribution of values. The all-pay auction (a non-revelation mechanism) is the Bayesian optimal mechanism; as it is prior-independent it is also the prior-independent optimal mechanism (a 1-approximation). We prove a lower bound on the prior-independent approximation of revelation mechanisms of 1.013 and that the clinching auction (a revelation mechanism) is a prior-independent $e \approx 2.714$ approximation. Thus the revelation gap for single-item welfare maximization with public budget agents is in $[1.013, e]$. Some of our analyses extend to the revenue objective, position environments, and irregular distributions.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.