Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Scaling Out Acid Applications with Operation Partitioning (1804.01942v1)

Published 5 Apr 2018 in cs.DC and cs.DB

Abstract: OLTP applications with high workloads that cannot be served by a single server need to scale out to multiple servers. Typically, scaling out entails assigning a different partition of the application state to each server. But data partitioning is at odds with preserving the strong consistency guarantees of ACID transactions, a fundamental building block of many OLTP applications. The more we scale out and spread data across multiple servers, the more frequent distributed transactions accessing data at different servers will be. With a large number of servers, the high cost of distributed transactions makes scaling out ineffective or even detrimental. In this paper we propose Operation Partitioning, a novel paradigm to scale out OLTP applications that require ACID guarantees. Operation Partitioning indirectly partitions data across servers by partitioning the application's operations through static analysis. This partitioning of operations yields to a lock-free Conveyor Belt protocol for distributed coordination, which can scale out unmodified applications running on top of unmodified database management systems. We implement the protocol in a system called Elia and use it to scale out two applications, TPC-W and RUBiS. Our experiments show that Elia can increase maximum throughput by up to 4.2x and reduce latency by up to 58.6x compared to MySQL Cluster while at the same time providing a stronger isolation guarantee (serializability instead of read committed).

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube