Papers
Topics
Authors
Recent
2000 character limit reached

The Kanerva Machine: A Generative Distributed Memory (1804.01756v3)

Published 5 Apr 2018 in stat.ML, cs.AI, cs.LG, and cs.NE

Abstract: We present an end-to-end trained memory system that quickly adapts to new data and generates samples like them. Inspired by Kanerva's sparse distributed memory, it has a robust distributed reading and writing mechanism. The memory is analytically tractable, which enables optimal on-line compression via a Bayesian update-rule. We formulate it as a hierarchical conditional generative model, where memory provides a rich data-dependent prior distribution. Consequently, the top-down memory and bottom-up perception are combined to produce the code representing an observation. Empirically, we demonstrate that the adaptive memory significantly improves generative models trained on both the Omniglot and CIFAR datasets. Compared with the Differentiable Neural Computer (DNC) and its variants, our memory model has greater capacity and is significantly easier to train.

Citations (37)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.