Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Tight Query Complexity Lower Bounds for PCA via Finite Sample Deformed Wigner Law (1804.01221v2)

Published 4 Apr 2018 in cs.LG, cs.DS, cs.IT, math.IT, math.OC, and stat.ML

Abstract: We prove a \emph{query complexity} lower bound for approximating the top $r$ dimensional eigenspace of a matrix. We consider an oracle model where, given a symmetric matrix $\mathbf{M} \in \mathbb{R}{d \times d}$, an algorithm $\mathsf{Alg}$ is allowed to make $\mathsf{T}$ exact queries of the form $\mathsf{w}{(i)} = \mathbf{M} \mathsf{v}{(i)}$ for $i$ in ${1,...,\mathsf{T}}$, where $\mathsf{v}{(i)}$ is drawn from a distribution which depends arbitrarily on the past queries and measurements ${\mathsf{v}{(j)},\mathsf{w}{(i)}}_{1 \le j \le i-1}$. We show that for every $\mathtt{gap} \in (0,1/2]$, there exists a distribution over matrices $\mathbf{M}$ for which 1) $\mathrm{gap}r(\mathbf{M}) = \Omega(\mathtt{gap})$ (where $\mathrm{gap}_r(\mathbf{M})$ is the normalized gap between the $r$ and $r+1$-st largest-magnitude eigenvector of $\mathbf{M}$), and 2) any algorithm $\mathsf{Alg}$ which takes fewer than $\mathrm{const} \times \frac{r \log d}{\sqrt{\mathtt{gap}}}$ queries fails (with overwhelming probability) to identity a matrix $\widehat{\mathsf{V}} \in \mathbb{R}{d \times r}$ with orthonormal columns for which $\langle \widehat{\mathsf{V}}, \mathbf{M} \widehat{\mathsf{V}}\rangle \ge (1 - \mathrm{const} \times \mathtt{gap})\sum{i=1}r \lambda_i(\mathbf{M})$. Our bound requires only that $d$ is a small polynomial in $1/\mathtt{gap}$ and $r$, and matches the upper bounds of Musco and Musco '15. Moreover, it establishes a strict separation between convex optimization and \emph{randomized}, "strict-saddle" non-convex optimization of which PCA is a canonical example: in the former, first-order methods can have dimension-free iteration complexity, whereas in PCA, the iteration complexity of gradient-based methods must necessarily grow with the dimension.

Citations (37)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube