Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

In-depth Question classification using Convolutional Neural Networks (1804.00968v1)

Published 31 Mar 2018 in cs.CL

Abstract: Convolutional neural networks for computer vision are fairly intuitive. In a typical CNN used in image classification, the first layers learn edges, and the following layers learn some filters that can identify an object. But CNNs for Natural Language Processing are not used often and are not completely intuitive. We have a good idea about what the convolution filters learn for the task of text classification, and to that, we propose a neural network structure that will be able to give good results in less time. We will be using convolutional neural networks to predict the primary or broader topic of a question, and then use separate networks for each of these predicted topics to accurately classify their sub-topics.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube