Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

In-depth Question classification using Convolutional Neural Networks (1804.00968v1)

Published 31 Mar 2018 in cs.CL

Abstract: Convolutional neural networks for computer vision are fairly intuitive. In a typical CNN used in image classification, the first layers learn edges, and the following layers learn some filters that can identify an object. But CNNs for Natural Language Processing are not used often and are not completely intuitive. We have a good idea about what the convolution filters learn for the task of text classification, and to that, we propose a neural network structure that will be able to give good results in less time. We will be using convolutional neural networks to predict the primary or broader topic of a question, and then use separate networks for each of these predicted topics to accurately classify their sub-topics.

Citations (3)

Summary

We haven't generated a summary for this paper yet.